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Abstract. We establish a novel correspondence between the spacetime correlators of one-
dimensional (1D)N -particle classical stochastic models described by a Langevin equation with
that of the ground-state dynamics of a class of integrable 1D interacting many-body quantum
models of thesupersymmetricelliptic 1/r2 type. We show that these seemingly different
concepts of stochastic systems, supersymmetry and quantum integrability can be viewed in
a unified framework. Starting with anN × N Lax matrix, we show that row (column) sums
driven by a Gaussian noise term may be interpreted as a set of forward (backward) Langevin
equations. Then, following functional path integral methods of stochastic quantization, we
straightforwardly find an associated supersymmetric 1D quantum Hamiltonian. If, further, the
classical stochastic system consists of two-body interactions only and we also want the quantum
interactions to be of two-body type, we find that the only class of interactions permissible
for the quantum models corresponds to the elliptic 1/r2 models. The algebraic structure that
emerges very naturally reproduces the proof of integrability and allows the identification of the
ground-state wavefunction of these quantum models.

1. Introduction

In 1971, Sutherland [1] made an intriguing discovery. The square of the ground-state
wavefunction of a one-dimensional many-particle system interacting via the pairwise
potential λ(λ − 1)/ sin2(x) is identical to the joint probability density function for the
eigenvalues of matrices from Dyson’s circular ensemble [2],λ = 1

2, 1 and 2 corresponding
to orthogonal, unitary and symplectic ensembles, respectively. This connection with the
theory of random matrices then enables the explicit calculation of various non-trivial static
correlation functions such as, for example, the one-particle reduced density matrix [1, 3] for
all length scales.

Until recently, the underlying reasons for this above connection of an exactly soluble
quantum many-body system and disordered or quantum chaotic systems had not been
exposed. However, in a series of remarkable works, Altshuler, Simons and co-workers
[4] have calculated a certain correlation function of two variables by the supersymmetric
method of Efetov [5] which after suitable rescaling of the parameters is just a dynamical
correlation function of the 1/ sin2(x) model. Subsequent work done by various authors has
enabled the calculation of other dynamical correlation functions [6] and clarified the route
from a two random matrix problem to 1/r2 type models [7].

§ Present address: Institut für Physik, TU Chemnitz-Zwickau, D-09107 Chemnitz, Germany.

0305-4470/96/081651+07$19.50c© 1996 IOP Publishing Ltd 1651



1652 A Punnoose and R A Römer

In this work, we establish a connection between classical stochastic systems (described
by a Langevin or a Fokker–Planck (FP) equation) and thesupersymmetric1/r2 type models
by stochastically quantizing the classical systems [8]. We show that if the interaction
potentials of the stochastic system and the resulting quantum system are chosen to be
pairwise and translationally invariant, then the only class of interactions possible for the
quantum models corresponds to the elliptic 1/r2 type considered by Calogero and Sutherland
[1, 9, 10]. The algebraic structure that emerges very naturally allows for the proof of
integrability of these quantum models as shown in [11]. Finally, we show how the Langevin
description, the supersymmetry and the integrability can be reconstructed by using suitable
sums and products of Fermi creation and annihilation operators and the Laxl matrix.

2. Parisi–Wu quantization of an N -particle gas

Let S[x] denote the Euclidean ‘action’ of anN -particle system with coordinate set
{x} = {x1, . . . , xN }. We now introduce a time parameterτ and consider the following
set of Langevin equations for the behaviour of theN interacting particles,

dxj
dτ

= − ∂S

∂xj
+ ηj (τ ). (1)

Hereη is a Gaussian random variable representing the noise driving the Langevin equation,
i.e. 〈ηj 〉η = 0, 〈ηj (τ )ηk(0)〉η = 2δjkδ(τ ). The angular brackets denote a connected average
with respect to the random variableη. This implies that the probability distribution of the
noise is given as

P[η] = exp

[
− 1

4

N∑
j=1

∫ ∞

0
dτη2

j (τ )

]
(2)

normalized as
∫ D[η]P[η] = 1 with discrete time slicesτm = mε and D[η] =∏N

j

∏∞
m=1D[ηj (τm)].

Following Gozzi [12], we now consider the generating functional for performing the
noise and the initial configuration average. It is defined as

Z[J ] =
∫

D[η]
∫

d[x(0)]P [x(0)] exp

[
− 1

4

N∑
j=1

∫ ∞

0
dτη2

j (τ )−
N∑
j=1

∫ ∞

0
dτJjx

η

j

]
(3)

with d[x(0)] = ∏N
j=1 dxj (0). Further,xηj denotes the solution of the Langevin equations

for a given realization of the noise and with some initial probability distribution of the
particlesP [x(0)]. {J } = (J1, J2, . . . , JN) are the source terms. Note that we have already
normalized the generating functional such thatZ[0] = 1. The time-dependent correlation
functions can be derived by differentiating the generating function appropriately:

〈xη1(τ1)x
η

2(τ2) . . . x
η
n(τn)〉η = (−1)nδnZ[J ]

δJ1(τ1)δJ2(τ2) . . . δJn(τn)
. (4)

We now use the Langevin equation (1) to make the following Nicolai mapping [13] for
η in Z:

ηj (τ ) → dxj
dτ

+ ∂S

∂xj
. (5)
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The Jacobian of this transformation is given as det[δηj (τ )/δxk(τ
′)] and we may evaluate

straightforwardly

δηj (τ )

δxk(τ ′)
=

[
δjk

{
d

dτ
+ ∂2S[x]

∂x2
j

}
+ (1 − δjk)

∂2S[x]

∂xk∂xj

]
δ(τ − τ ′). (6)

We next introduce Grassman variablescj (τ ), c∗j (τ ) and use the identity

det[M] =
∫

D[c∗]D[c] exp

[
−

∫ ∞

0
dτ dτ ′ ∑

jk

c∗j (τ )Mjk(τ, τ
′)ck(τ ′)

]
(7)

for the Jacobian. We then have forZ[J ],

Z[J ] =
∫

D[x]D[c∗]D[c]P [x(0)]

× exp−
∫

dτ

{ ∑
j

1

4

[
dxj
dτ

+ ∂S[x]

∂xj

]2

+
∑
j

c∗j

[
d

dτ
+ ∂2S[x]

∂x2
j

]
cj

+
∑
j 6=k

∂2S[x]

∂xk∂xj
c∗j ck +

∑
j

Jjxj

}
. (8)

We now rescale the Euclidean timeτ → 2τ and open the square in the first term of the
exponential in equation (8). The resulting cross term can be integrated explicitly, i.e.∫ ∞

0
dτ

∑
j

dxj
dτ

∂S[x]

∂xj
=

∫ ∞

0
dτ

dS[x]

dτ
= S[x(∞)] − S[x(0)]. (9)

We then get

Z[J ] =
∫

D[c∗]D[c]d[x(0)]P [x(0)] eS[x(0)]/2D[x(∞)] e−S[x(∞)]/2D[x ′]

× exp−
∫

dτ

(
L +

∑
j

Jjxj

)
(10)

where

D[x ′] =
N∏
j=1

lim
n→∞

n−1∏
m=1

D[xj (τm)] (11)

and the Lagrangian is given as

L =
∑
j

[
1

2

(
dxj
dτ

)2

+ 1

8

(
∂S[x]

∂xj

)2
]

+
∑
j

c∗j

[
d

dτ
+ 1

2

∂2S[x]

∂x2
j

]
cj +

∑
j 6=k

1

2

∂2S[x]

∂xk∂xj
c∗j ck.

(12)

Let us now choose an initial distributionP [x(0)] = δ(x(∞) − x(0)). This choice
cancels the boundary term in the integral in the exponent. The generating functional is then
given as

Z[{J }] =
∫

D[c∗]D[c]D[x ′′] exp−
∫

dτ

(
L +

∑
j

Jjxj

)
(13)

with D[x ′′] = D[x ′]D[x(∞)]. CastingL in a form symmetric inc∗ andc, we get

L =
∑
j

[
1

2

(
dxj
dτ

)2

+ 1

8

(
∂S[x]

∂xj

)2
]

+
∑
j

1

4

d

dτ
[c∗j , cj ] +

∑
j

1

4

∂2S[x]

∂x2
j

[c∗j , cj ]
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+
∑
j 6=k

1

4

∂2S[x]

∂xk∂xj
[c∗j , ck]. (14)

Next, we Wick-rotate the Euclidean Lagrangian byτ → it . We introduce position and
momentum operators with canonical commutation relations

[x̂j , p̂k] = iδjk. (15)

The fermionic degrees of freedom from the treatment of the Jacobian are taken into account
by the operatorŝψ and ψ̂† and

{ψ̂†
j , ψ̂k} = δjk. (16)

Then the Hamiltonian corresponding to the LagrangianL is

H =
∑
j

[
p̂2
j

2
+ 1

8

(
∂S[x]

∂xj

)2

+ 1

4

∂2S[x]

∂x2
j

[ψ̂†
j , ψ̂j ]

]
+

∑
j 6=k

1

4

∂2S[x]

∂xj∂xk
[ψ̂†
j , ψ̂k]. (17)

Opening the commutator brackets, we find thatH can be written as a sum of a purely
bosonic and a purely fermionic part asH = Hb +Hf , with

Hb =
∑
j

p̂2
j

2
+ 1

8

(
∂S[x]

∂xj

)2

− 1

4

∂2S[x]

∂x2
j

(18)

and

Hf =
∑
j

1

2

∂2S[x]

∂x2
j

ψ̂
†
j ψ̂j +

∑
j 6=k

1

2

∂2S[x]

∂xj∂xk
ψ̂

†
j ψ̂k. (19)

Note here that the use of the terms bosonic and fermionic is slightly misleading, since the
system described byHb can also include fermionic degrees of freedom.

The choice of initial condition of the probability distribution asP [x(0)] = δ(x(∞) −
x(0)) puts periodic boundary conditions on the bosonic path integral. In evaluating the
determinant in equation (7), periodic boundary conditions are imposed on the fermionic
degrees. These two boundary conditions together project out only states with initial
particle distribution equal to the equilibrium distributionP [x(0)] = e−S[x0] and zero fermion
occupation number. This then implies that the ground state of the HamiltonianH is simply
given as

9g = N e−S/2|0〉 (20)

where|0〉 denotes the Fermi vacuum andN is a normalization constant. Hence by studying
the equilibrium distribution of the classical stochastic system, the ground state of a highly
non-trivial interacting many-body quantum system can be obtained. Furthermore, the
correlation functions〈xη1(τ1)x

η

2(τ2) . . . x
η
n(τn)〉η of equation (4) are stationary, i.e. they are

functions of the differencesτj − τk only.

3. Hidden symmetries and the two-body condition

As has been noted previously in [12], the HamiltonianH exhibits a hidden non-relativistic
variant of supersymmetry. We define the quantities

Qj = p̂j − i

2

∂S[x]

∂xj
(21)

ζ =
∑
j

Qj ψ̂
†
j . (22)
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Then it immediately follows by construction thatζ9g = ζ †9g = 0 and that [Qj,Qk] = 0,
and

H = 1
2{ζ, ζ †} (23)

= 1
2

∑
j

Q
†
jQj + 1

2

∑
jk

[Qj,Q
†
k]ψ̂

†
j ψ̂k. (24)

Furthermore, sinceζ 2 = (ζ †)2 = 0, we also have that [H, ζ ] = [H, ζ †] = 0. We note that
this quantum mechanical supersymmetry has been studied in detail in [14]

Let us now make the ansatz that the actionS that appeared in the Langevin equation (1)
should consist of a sum of translationally invariant two-body interactions, i.e.

S[x] = 2
∑
j 6=k

s(xj − xk) (25)

with s(x) = s(−x). We further defineσjk = σ(xj −xk) = ∂s(xj −xk)/∂xj . We now want to
make contact between the above procedure and explicit models of one-dimensional quantum
systems. Thus we look for a translationally invariant two-body potentialV (|xj − xk|), such
that ∑

j 6=k
V (|xj − xk|)− E0 =

∑
j

1

8

(
∂S[x]

∂xj

)2

− 1

4

∂2S[x]

∂x2
j

(26)

= 2
∑
j 6=k

σ 2
jk −

∑
j 6=k

σ ′
jk + 2

∑
jkl

σjkσjl . (27)

The first two terms on the right-hand side of equation (27) are already in the required
form. The third term on the right-hand side may be rewritten as a sum over triples, i.e.
σjkσkl + σklσlj + σljσjk. With a = xj − xk, b = xk − xl andc = xl − xj = −a − b, we are
then looking for some odd functionσ(x), such that

σ(a)σ (b)+ σ(b)σ (c)+ σ(c)σ (a) = v(a)+ v(b)+ v(c) (28)

with a + b + c = 0 andv(x) even. This equation has already appeared in the literature
in the context of the 1/r2 type potentials [1, 9, 10] and we may immediately conclude the
following.

(i) The most general solution of the above equation for a periodic potential is given by

σ(x) = −λZ(x|n) (29)

s(x) = − ln[θλ(x|n)] (30)

whereZ(x|n) andθ(x|n) are the Jacobi zeta and theta function with modulusn, respectively.
Taking suitable limits, this then includes the hyperbolic potentialVh = λ(λ − 1)/ sinh2(x)

corresponding to the actionSh[x] = −λ∑
j 6=k ln | sinh[xj − xk]|, the trigonometric potential

Vt = λ(λ − 1)/ sin2(x) corresponding to the actionSt[x] = −λ∑
j 6=k ln | sin[xj − xk]| and,

lastly, the potentialV0 = λ(λ− 1)/x2 with S0[x] = −λ∑
j 6=k ln |xj − xk|.

(ii) The ground state of the supersymmetric Hamiltonian is

9 = N
N∏
j<k

[θ(xj − xk|n)]λ|0〉 (31)

in agreement with equation (20).
We emphasize that the supersymmetric 1/r2 type Hamiltonians therefore constitute the

only possible family of translationally invariant two-body quantum Hamiltonians associated
with stochastic overdamped two-body systems described by a Langevin equation. Note also
that this choice of actionS to consist of pairwise interactions only, restricts the possible
ground state to be of the Jastrow type.
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4. The Lax l and m matrices

Let us now back up a little and see if we can find a unifying theme for the above
constructions. We then remember that the bosonic Hamiltonian is well known to be
integrable [10] by a technique due to Lax [15] which replaces the equations of motion
by a matrix commutator of two matricesl andm. Integrals of motion can be constructed
asJn = Tr[ln3] with 3jk = 1 for all j , k [11]. The Hamiltonian is included in this series
of integrals sinceJ2 = H − E0. This indicates that one should in fact view thel matrix
and not the Hamiltonian as the fundamental quantity in these models. Therefore, let us
introduce the Laxl matrix given as

ljk = p̂j δjk + iσjk(1 − δjk). (32)

Keeping in mind the earlier Wick-rotation and the rescalingτ → 2τ , and further replacing
the operators by their classical observables, we find that the Langevin equation (1) may be
written as ∑

k

ljk = Qj = ηj (τ ). (33)

We remark that, instead of the row sums ofl, we could have also used the column sums.
This would only have changed the direction of time. Equation (33) also establishes a direct
connection of the Laxl matrix with the generators of supersymmetry.

The integrability of the bosonic HamiltonianHb was shown by Shastry and Sutherland
[11] by defining the operatorL = ∑

jk ljkψ̂
†
j ψ̂k, which satisfies the commutation relation

[H,L] = 0. Note that this equation in fact implies the above-mentioned Lax relation for the
bosonic system, i.e. [l, Hb] = ml − lm. Them matrix is simply contained in the fermionic
Hamiltonian asHf = ∑

jk mjkψ̂
†
j ψ̂k. The proof of the integrability of the system described

by the bosonic Hamiltonian further requires the row and column sums of them matrix to
vanish [11]. An important feature of the algebraic structure provided by our construction
is the origin of them matrix in the fermionic part of the HamiltonianH . Further, it
automatically satisfies the above row and column sum constraint.

Adding a one-body term to the form ofS, we may again follow the above route from
equation (1) to equation (24). Thus the supersymmetric generalizations of the Calogero type
potentials [16] with one-body termsωx2

j /2 are included in the present derivation. However,
for finite ω, the proof of integrability no longer holds for these systems.

5. Conclusions

Let us summarize. We start with anN × N matrix l such that its diagonal elements
correspond to the momenta of a classicalN -particle system and the off-diagonal elements
are odd functions of the coordinates specified by row and column indices only. Next,
we sum over the rows of this matrix and drive the resulting differential equations with a
Gaussian random force. This Langevin equation is then treated by means of the Parisi–
Wu stochastic quantization, resulting in the construction of a Hamiltonian for an associated
quantumN -particle system atT = 0. This quantum system is necessarily supersymmetric,
the generators of the symmetry being again the row (column) sums of thel matrix together
with simple Fermi operators. If we now restrict the interactions of our quantum system to
be of the two-body type, we find that elliptic interactions give the most general possible
solution.

This connection of a Langevin equation with models of the 1/r2 type has been
established previously by Dyson in the context of his studies of the so-called log–sine gas [2].
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There, the 1/ sin2(x) Hamiltonian is simply the Euclideanized Fokker–Plank Hamiltonian.
Here, we show in addition that any translationally invariant two-body interaction in the
Langevin description necessarily restricts the associated two-body quantum system to belong
to the family of 1/r2 models. In this sense, the 1/r2 model is the universal model of
disordered overdamped systems described by a Langevin equation.

Furthermore, the Laxmmatrix, which is necessary for the Lax-type proof of integrability
of the bosonic quantum system described byHb, appears very naturally in the fermionic
partHf of the supersymmetric HamiltonianH .

In closing, we note that, unfortunately, our method does not seem to be useful for the
calculation of correlation functions of either the classical disordered system or the associated
quantum system. It does, however, reveal a fascinating connection of integrability and
supersymmetry via the route of stochastic quantization.
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